Interaction of sine-Gordon kinks with defects: The two-bounce resonance
نویسندگان
چکیده
A model of soliton-defect interactions in the sine-Gordon equations is studied using singular perturbation theory. Melnikov theory is used to derive a critical velocity for strong interactions, which is shown to be exponentially small for weak defects. Matched asymptotic expansions for nearly heteroclinic orbits are constructed for the initial value problem, which are then used to derive analytical formulas for the locations of the well known twoand three-bounce resonance windows, as well as several other phenomena seen in numerical simulations. 1 The two-bounce resonance The two-bounce resonance is a phenomenon displayed by many non-integrable systems in which a solitary wave interacts either with another solitary wave or else with a localized defect in the medium through which it propagates. Fei, Kivshar, and Vázquez study the two-bounce resonance in the sine-Gordon equation perturbed by a localized nonlinear defect [8]. utt − uxx + sinu = ǫδ(x) sinu. (1.1) Kink solitons are initialized propagating (numerically) toward a defect with velocity vi and allowed to interact with the defect. Then one of two things might happen: either the soliton is trapped and comes to rest at the defect location, or else it escapes and propagates away at finite speed vf . (The soliton cannot be destroyed by the interaction because it is defined by its boundary conditions at infinity.) They find that there exists a critical velocity vc. Kink solitons with initial velocity greater than vc pass by the defect. Most solitons with initial speeds below the vc are trapped, remaining at the defect for all times after the interaction time. However, there exist bands of initial velocities, known Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102 Department of Mathematics, Southern Methodist University, Dallas, TX 75275
منابع مشابه
Interaction of sine-Gordon kinks with defects: phase space transport in a two-mode model
We study a model derived by Fei et al. [Phys. Rev. A 45 (1992) 6019] of a kink solution to the sine-Gordon equation interacting with an impurity mode. The model is a two degree of freedom Hamiltonian system. We investigate this model using the tools of dynamical systems, and show that it exhibits a variety of interesting behaviors including transverse heteroclinic orbits to degenerate equilibri...
متن کاملSoliton-like Solutions of the Complex Non-linear Klein-Gordon Systems in 1 + 1 Dimensions
In this paper, we present soliton-like solutions of the non-linear complex Klein-Gordon systems in 1+1 dimensions. We will use polar representation to introduce three different soliton-like solutions including, complex kinks (anti-kinks), radiative profiles, and localized wave-packets. Complex kinks (anti-kinks) are topological objects with zero electrical charges. Radiative profiles are object...
متن کاملGeneralized solution of Sine-Gordon equation
In this paper, we are interested to study the Sine-Gordon equation in generalized functions theory introduced by Colombeau, in the first we give result of existence and uniqueness of generalized solution with initial data are distributions (elements of the Colombeau algebra). Then we study the association concept with the classical solution.
متن کاملThermal Bosonisation in the Sine-gordon and Massive Thirring Models
We study bosonisation in the massive Thirring and sine-Gordon models at finite temperature T and nonzero fermion chemical potential µ. For that purpose we use both canonical operator and path integral approaches, paying particular attention to the issues of thermal normal ordering and renormalisation. At T > 0 and µ = 0, the massive Thirring model bosonises to the sine-Gordon model with the sam...
متن کاملComment on "pi kinks in strongly ac driven sine-Gordon systems".
V. Zharnitsky, I. Mitkov, and N. Gronbech-Jensen [Phys. Rev. E 58, 1, R52 (1998)] found that pi kinks can propagate in strongly perturbed, directly driven rescaled sine-Gordon system provided that the parameters are chosen to make 2pi kink localization vanish. In this paper we would like to note that beside pi and 2pi kinks there can exist other kinklike solutions due to the fact that two unsta...
متن کامل